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THE ORDERING OF LOCALIZED ELECTRON PAIRS IN 
MIXED-VALENCE CRYSTALS 

Institute of Physiologically Active Substances, Academy of Sciences of the USSR, Laboratory 
of Structural Methods of Investigation, 142432 Chernogolovka, USSR 

ABSTRACT 

The aim of this article is to describe the factors that determine the types of ground 
states in crystals with localized electron pairs, or bipolarons. We consider the 
concentration of the electron pairs and parameters describing the lattice 
polarization due to the bipolaron-phonon interaction, together with parameters for 
the possible ground states. All the parameters and the bipolaron concentration 
must be self-consistently related. The conditions that favour the disordered and 
superconducting states, and the charge-ordered states, of such crystals are 
presented. 

1. INTRODUCTION 

The last decade has seen rapid progress in the theory of localization4elocalization 
processes of electron pairs in mixed-valence crystals [see papers by Ionov et al. (1970, 
1975, 1981); Anderson (1975); Chackraverty and Schlenker (1976); Wilson (1978); 
Toyzawa (1981); Lubimov et al. (1978); Alexandrov and Ranninger (1981)l. 

The existence of localized electron pairs (or bipolarons, as they were first named by 
Anderson (1975)) was experimentally established in the crystals formed by cube- 
octahedron complexes, such as M,SbHal, (where M = Rb’, Cs+ ,  NHd ; Hal=C1, Br) 
(Ionov et al., 1970,1975), as well as in BaBiO, and BaPb, -xBi,O, crystals (Raub et al., 
1964). Electron pairs in such crystals are localized in the outer shells of the cube- 
octahedron complexes located in lattice sites. A typical size of such a pair is 
-5 x lo-* cm and its binding energy is - 1 eV. 

A quasi-chemical mechanism of stabilization of the electron pair in the site was 
introduced by Ionov et al. (1970, 1975, 1981) using the following disproportionation 
reaction as the basis: 

2M’X;- -+ M’X2- +M’XA- 

where M’ is the central atom of the group of atoms and X is the Iigand. 
An equilibrium displacement of this reaction to the right corresponds to the 

formation of an effective attraction between electrons in the complex. The disproport- 
ionation equilibrium displacement to the right or, in other words, the instability of the 
electron configuration of the complex relative to the mixture of valencies, implies that 
noninteracting complex energies with a different number of electrons in the s-shell 
satisfy the inequality (Makarov et al., 1975) 

2E,s1, > EW) + E ( S 0 ,  ( 1 )  
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238 The ordering of locafized electron pairs 

E(sl) and E(S2) are the energies of the complexes with one and two electrons, respectively; 
E(,,,) is its energy with an empty s-shell. 

The experimental data point to the fact that, as to the mixture of valencies, not only 
elements with a valence s-shell (Sb3+, Bi3+) are found to be unstable, but also those 
with d- andf-electron configurations (M,V,O,, where M is an alkali metal, Cu, Ag 
(Chackraverty et al., 1978),Ti407 (Lakkis et al., 1976), (Ti, -xVx)407, Li, +xTi2 -x04, 
Na,.,W03 (Schlenker et al., 1979; Johnston et al., 1973; Sweedler et al., 1965; Sleight, 
1976; and Thanh et al., 1980). Most of the above compounds are superconductors, 
some of them having a fairly high transition temperature; in Li, -xTi,-x04, T,= 14 K 
(Johnston et al., 1973); in BaPbo,7,Bi,,2,03, T,= 11.7 K (Rauls et al., 1964). 

The inequality (1) exhibits the presence of an effective electron attraction in the 
complex. In the appendix to this article (1) is expressed in terms of parameters of the 
complex which relate to the fact that the electrons interact with intracomplex 
oscillations. The form of the effective attraction giving rise to (1) turns out not to be 
commonplace. In particular, the terms of the complexes with s' and so (see (3A) in the 
Appendix) contribute to the formation of a relative effective attraction in the complex 
with sz. This is a very distinct characteristic by which a quasi-chemical mechanism 
differs from a normal mechanism of attraction (Anderson, 1975; Chackraverty and 
Schlenker, 1976). Also note that the effective attraction, from the viewpoint of (l), 
can also be gained through the interaction between s-electrons and electrons of inner 
shells (Manakova, 1981). 

Note that, as was shown with the help of the analysis of Ionov et al. (198 l), the quasi- 
chemical approach is effective for analysing the possibilities of occurrence of bipolarons 
in compounds of every kind. 

The ground states of the crystal formed by the complexes in which localized pairs- 
bipolarons-are to be found, or, in other words, the types of ordering of bipolarons in 
the crystal, are governed by the following factors : the interaction of bipolarons in 
different sites; their relation with the crystalline phonons; the bipolaron hopping 
between different sites; as well as their concentration. 

At a given concentration (the number of electrons is equal to that of the sites) the 
types of ordering in crystals with bipolarons were determined according to the 
interaction parameters (Lubimov et al., 1978), and according to the concentration 
(Alexandrov and Ranninger, 198 1 ; Alexandrov, 1982). 

But these papers neglected a decisive fact in considering the properties of crystals 
with bipolarons. The point is that in those crystals the bipolaron bandwidth 
(determined by bipolaron hopping), and the interaction between bipolarons on 
different sites and that between them and crystalline phonons have magnitudes of the 
same order. In this sense such crystals have a strong bipolaron-phonon interaction. 
That is why the degree oflattice polarization and the parameters of the ground state are 
self-consistently related and should be determined in combination, as will be 
demonstrated in the present article. But in the work of Alexandrov and Ranninger 
(1981), for example, the lattice polarization was the first to be determined, i.e. the 
Hamiltonian coefficients were renormalized with regard to polaron effects, followed by 
the determination of types of the ground states using the given polarization. 

Thus, the aim of this work is to determine the types of ground states in crystals with 
localized pairs according to their concentration (density) and the values of parameters 
describing the lattice polarization due to the bipolaron-phonon interaction. 

The structure of the paper is as follows. Section 2 deals with the formulation of the 
problem of determining the types of ground states. The chemical potential, energy and 
other features of the states with a superconducting correlation and those of a 
disordered state are calculated in Section 3. Again there are conditions for the 
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L. A. MANAKOVA AND S. P. IONOV 239 

concentration which permit the state with a superconducting correlation to be realized. 
In Section 4 the chemical potential and energy for a charge-ordered state are 
calculated. The conditions for realizing a particular state depending on parameters and 
density are determined in Section 5. Section 6 is devoted to calculating the energy for a 
pair transfer from one site to its neighbour, controlled by density. Here one finds the 
conditions for the ground state occurring with pairs delocalized on neighbouring sites. 
The conclusions in Section 7 summarize the principal results. 

The conditions permitting the inequality (1 ) to be realized in the complexare given in 
the Appendix. 

2. FORMULATION OF THE PROBLEM 

If the energy of isolated complexes with different numbers of electrons in the s-shell 
satisfies Eq. (1) (see also Eq. (3A) in the Appendix), then in the complex (site) a pair of 
electrons is stabilized or, in other words, a bipolaron forms there. The bipolaron 
formation also occurs under the conditions suggested by Anderson (1975) and 
Chackraverty and Schlenker (1976). 

The ground state of the crystal, on whose sites there are complexes with a pair of 
electrons in the outer shell, is determined by the intersite relation of the electron pairs, 
by their interactions with crystalline phonons, and by the bipolaron (electron) density. 
If one assumes that the binding energy of the electron pair on the site is much greater 
than both the interactions mentioned and kT, then the Hamiltonian describing the 
bipolaron behaviour in the crystal may be given as follows: 

H =  - p  C B+Bi- C eijB:Bj+ 1 V$TBiBj’Bj 
i i + j  i + j  

+ C F ( q )  (C ,e i4 . r~+Cte - i4 . r )B+Bi+  o,C:C, (2) 
Pi 4 

where Bi =aiTail is the bipolaron operator on site i ;  C:, C ,  are the phonon operators, F ,  
being the parameter describing the magnitude of the electron-phonon interaction; I / i j  
is the intersite Coulomb interaction; cij  describes bipolaron hopping energy to the 
adjacent sites (it is associated with a one-electron hopping t i j  in the following way : 
c i j=  t g J ,  J being the intrasite Coulomb interaction); oq is the phonon energy; and p is 
the chemical potential. We shall consider all the Hamiltonian parameters (vj, F,, cij) to 
have the same order of magnitude. The bipolaron-phonon interaction is found to be 
strong in this case. 

Our purpose is to ascertain the types of bipolaron ordering in the crystal according 
to the interaction parameters Fj ,  F ( q ) ,  the hopping energy .sij, as well as the bipolaron 
density. In this case we shall, and this is the most important thing, demonstrate that the 
degree of lattice polarization due to the bipolaron-phonon interaction and the 
parameters of the ground state are self-consistently related. 

It should be apparent that the following states of bipolarons are possible in the 
crystal. 

1. The disordered (by electron pairs) state without a superconducting correlation. 
2. The state with a superconducting correlation (s-state). 
3. The charge-ordered state when electron pairs fill every next-but-onelattice site (co- 

state). 

A homogeneous bipolaron distribution over the lattice corresponds to states (1) and 
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240 The ordering of localized electron pairs 

(2) ,  and in such a distribution the number of bipolarons on neighbouring sites over the 
lattice is the same on average. 

The ground state will be determined by a variation method. The trial functions are 
chosen in the following way. For states (1) and ( 2 )  with a homogeneous bipolaron 
distribution over the lattice, a trial function of the form 

i  i  

is taken, where ui, ui are the variable parameters satisfying the condition 

u?+u?=l  ( 3 4  
The average number of electrons on the adjacent sites i and j is then the same: 
( n i ) = ( n j ) = n ,  n = 2 v  where v is the electron density. The parameter of the 
superconducting correlation A is proportional to the product MU and is different from 
zero in the s-state (a precise definition of the parameter A is given in Eq. (1 1)). In the 
disordered state A = 0. 

For the co-state, in which there is an inhomogeneous bipolaron distribution 
throughout the lattice, a trial function is chosen as 

(4) 

i # j  are the indices of the neighbouring lattice sites, ui, uj are the variable parameters 
obeying the condition 

I $ > , , =  C I$ij>= C (ui+ujs,ZB,')IO) 
i + j  i + j  

u?+u,Z=l, i#j ( 4 4  
and in this case ( n j )  - ( n , )  = 2 v  where v is again the electron density. 

electron-(bipolaron)-phonon interaction. It is determined as follows: 
The function S entering into Eqs. (3) and (4) assigns the lattice polarization to the 

( 5 )  

f4 is an unknown function and it should be determined along with ui, ui, h.c. is the 
hermitian conjugate. This is a mathematical expression of the fact that the degree of 
lattice polarization is self-consistently related to the parameters of the ground states. It 
is just this important physical fact which was ignored by Alexandrov and Ranninger 
(1981). 

Since the chemical potential ,u is also an unknown function, additional conditions for 
its determination should be provided. For the s-state the required condition is 
zi($slnil$s) =No,  or, in the operators of the pairs, 

for the charge-ordered state: 

or in the operators of the pair number: 

No is the number of electrons in the system. 
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L. A. MANAKOVA AND S. P. IONOV 24 1 

For the disordered and s-states the following functions are unknown: ui (or ui),fp p; 

Below we calculate functionals ( ~ s l H I $ , )  and ( $ , , ~ H ~ $ , , )  and, miyimizing them 
with regard to the additional Eqs. (3a), (4a), (6)  and (7), obtain systems of equations for 
u,, ui& p in the s-state and in the co-state. The solution of these equations enables one 
to define the chemical potentials and energies of all the states as functions of the 
Hamiltonian parameters and the electron density. 

for the co-states: ui, ui,fq p. .'. 

3. DETERMINATION O F  CHEMICAL POTENTIALS AND ENERGIES FOR 
THE DISORDERED AND S-STATES 

Here we calculate the functional 

E s =  <$slHI$s,> = C <Ol (um + u m S : B m ) H ( u m , +  U m , S i * B : , ) I O )  (8 ) 
mm' 

Minimizing Es over ui, ui,fq, with the additional Eqs. (3a) and (6), we obtain a system of 
equations for ui,fq, p. 

Correlators of fourth and higher orders from the operators Bi and B: are reduced to 
the product of pair correlators of these operators in calculating different averages in 
Eq. (8), that is to say, the calculations are made in the mean-field approximation with 
respect to the operators B,. This approximation is valid at temperatures which are 
much smaller than the interaction parameters in the Hamiltonian Eq. ( 2 )  since at such 
temperatures fluctuation corrections dictated by correlators of higher orders are 
exponentially small (Kulik and Pedan, 1980). Also, when calculating the averages, the 
following relation between the number of pairs (bipolarons) and the number of 
electrons is used: 2(B' B i )  = (n i )  = ~ ( a ~ a i , ) ,  (n , )  is the number of electrons on site 
i. The relation is valid at temperahes much lower than the binding energy of 
bipolarons on the site (i.e. it is more accurate at temperatures at which the mean-field 
approximation is valid). Commutators for pair operators have the form : 

Based on the above, the following expressions are derived for the expectation values 
appearing in Eq. (8): 

[B, B']-=l-n, (9 ) 

The operator of a number of pairs is written here in a symmetrical form in i, j for 
convenience. Summing up is performed over the nearest neighbours (here and below): 
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242 The ordering of localized electron pairs 

To calculate this result the following relations were used: 

s;2cqs? = c, - 2&) 

s;*c,‘s?=cq-2K(q) 

pi(q)=f - iq.*i  

where 

46 

These relations follow from the transformation of the operator Cq (Davydov, 1976): 

SjCqSi=C,-[S~, CJ- 

(*s/HphJ*s) = 2  c w,:f:( 1 - ?) 
q,m= j , i  

($slHell$s) = - c ($slB:Bjl+s) . E i j  
i + j  

= - c Eij(uiujuiuj+uiuj) 
i + j  

here 

Rij is the spacing between nearest neighbours. 

Using the condition (ni) = ( n j )  = n, we obtain the following expression for the energy 
functional E,: 

In Q. (10) we introduce the superconducting order parameter Ai, which is defined as 
follows : 

The parameter t; is the effective bipolaron hopping: 
t?.= E .  .e- 5ij  

Because of the translational symmetry the order parameter A; is independent of the site 
index i. Hence the parameters ui, ui have the same property, i.e. ui = u j  z u, ui = u j  E u; i #j .  

1J CJ 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
2
1
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



L. A. MANAKOVA AND S. P. IONOV 243 

The parameters u, v satisfy the relation u2 + v2 = 1 (see Eq. 3a)). Taking into account 
these notions we obtain the final expression for the energy functional in the form 

E”= N - + p ~ n + u Z [ n ( l - - : ) - - 4 n + 4 ( 1  -:y]} 
4 

-4CF,Jq(1+Zq)v2 
4 

Here N is the number of sites, 

is the configuration sum. 

Using the symmetrical form with respect to i, j, as in Eq. (7), we obtain 
Now we must write down the condition for the definition of the chemical potential. 

( u ~ + u j 2 + 2 u i u j ) n + 2 ( u ~ + u ~ )  1 -- +- 1 -- (u”uj2) =No 
i*j ( :>’ ;( 1) ] 

and using relations ui = u j  = u = Js, u I  = v j  = u we have 

n = 2v, where v = No/N is the electron density. 
We minimize Eq. (12) with respect to u, f, and obtain the following equations: 

From Eq. (13) we can find u and then substituting this into Eq. (14), we can get the 
expression for the chemical potential. Thus using Eq. (16) the solution of the system 
(13)-(15) leads to 

u;,2 = :c1 +m)l (17) 
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where 

The ordering of localized electron pairs 

From Eqs. (17), (18) and (1 1) it follows that the superconducting order parameter is 
given as a function of electron density, by 

A(n) = t P  * (1 - f )  . Jm 
Substituting Eqs. (1 6 )  and (20) into (19) we derive the dependence of p on n for arbitrary 
densities, n. 

Real solutions for u and u are found only in a certain density range. Accordingly, at 
those densities A>O. At other densities the only real solution conforms to the value 
A = 0. In this case, either u = 0, u = 1, or u = 1, u= 0.. The solution with A # 0 is found at 
densities obeying the condition: 

1 -+(n)>O 
which is reduced to two systems of inequalities: 

1 - &n)>O, 1 + +(n)>0 

1 - 4(n )  d 0, 1 + +(n) d 0 
Condition (21) is satisfied at densities: 

4-2& n <4  + 2,h 
Condition (21a) has no solution. 

solution AZO is found in the range of densities satisfying the condition 
Inasmuch as the maximum possible value of n is equal to 2 in our problem, the 

n,,<n<2, n, ,=4-2fiz11,2 (22)  
We can also determine at which densities the chemical potential ps of the 
superconducting state is less than pH of the disordered (by pairs) state. Since in Eq. (19) 
f4 is independent of u, it can easily be done. Chemical potentials ps  and pH differ in the 
right-hand side of Eq. (19): for p, the right-hand side equals 0, as A = O .  This suggests 
that p , < p H  at those densities for which the right-hand side of Eq. (19), divided by 

is negative. It is so under the condition 
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L. A. MANAKOVA AND S. P. IONOV 245 

or using Eq. (17a), we find that p3<pH when the following inequality is satisfied: 

This inequality can be satisfied at all permissible densities. Thus, for all densities for 
which A#O, we have p,<pw Hence, the superconducting state is realized at these 
electron densities. In the general case the expression for p is unwieldy. Below we 
describe the density dependence of p(n )  in the following limiting cases: 

1. Densities sufficiently close to n=2, i.e. 

n 
1 --$1 2 ( l - v g l )  

2. Small densities: n $ 1. 

In case (1) 1 - n/2 $1 (or 1 - v $ 1). In the first order with respect to 1 - n/2 $1, we have 

In the first order ,us = pH, since A(n) - (1 - 42). In the second order we obtain 

It follows from Eq. (24) that at 1 - n/2 6 1 the chemical potential increases for FJwq e 1 
when the electron density decreases; for Fq/oq % 1 the chemical potential decreases, 
when the density decreases. 

In case (2) n e 1. There is some complication in this case. It is impossible to obtain 
analytical expressions for arbitrary interaction parameters, since the equation for 
f?) =fq(n = 0) is transcendental : 

where 
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246 The ordering of localized electron pairs 

In the general case this equation can only be solved numerically. Therefore we restrict 
ourselves to the following cases: 

(a) the phonon dispersion is absent: q = O ;  
(b) the weak-coupling limit: F4/w4< 1, i.e. 

Vo + FP"/w4( Vo - F,) 
(c) the extremely strong coupling limit: F4/04B 1, i.e. 

Vo < F;/w, 
In case (a) we obtain 

We used, for 

q = O :  t ,  =O, ( (R, . )=o,  z,= I, t p = C  &(Ri,)exp[-t(Rij)]=C &(Rij)-e0 

In case (b) the parameters t , ,  tP are independent off, in the first order for ~ 6 1 .  
Therefore in the first order we obtain 

Rtj 

In the case (c) t , t P + O  exponentially. Therefore we have 

Thus, at n < 1, p(')<O for all the parameter values. And the chemical potential p ( n )  
increases with the electron density. Now we write down the asymtotic expressions for 
the energy E ,  at 1 - n/2 6 1 and n < 1. In the case 1 - n/2 < 1 we obtain in the first order 

(29) + 8p(0) . u(o)  . J 1 )  - 8p(1' . (1 - u(0 )2 )  

Here p('), dl) are the first-order corrections for p and u.  The value of p( ' )  is given in 
Eq. (24). The correction u ( l )  can be found from Eq. (17); it is given by 

Substituting p ( l ) ,  u ( * ) ,  into the approximation Eq. (29) we obtain 
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L. A. MANAKOVA AND S. P. IONOV 247 

for the solution (30a) 

for the solution (30b). 
Since the chemical potentials for the solutions (30a) and (30b) are equal to each other 

in the second order (with respect to 1 - n/2 6 l), then near the value n=2 for E,,  < ESz 
the solution (30a) is realized, and for E s 1 > E s 2  the solution (30b) is realized. The 
inequality E,, < E S z  is valid under the condition Vo > 6F;/00 (without phonon 
dispersion). On the contrary, when Vo < 6F6/0,, the inequality E,, > E,, applies. 

In the case n < l  the following solutions are found: 

(a) u = l ,  u=O 
(b) ~ = 0 ,  u = l  

For solution (a) in the first order we have 

The correction p ' l )  is determined from the approximations (27) and (28). For solution 
(b) we obtain 

E s2 = -2pL'O) . n (31b) 
In the weak-coupling limit (F,/O,@ l), substituting p(O), pL(l) into (31a) and (31b), we 
obtain the expressions 

E s l  =-'9tP.n 28 , E s 2 = t P  ' n 

Thus, the state with u= 1, u = 0  is realized. In the extremely strong coupling limit 
( F q / o ,  % l ) ,  using the approximation (28), we obtain 

F; . (1 + Zq)2 F: . (1 + Z J 3  
Es1= -1 . n ;  E,, = 1 a n  

9 0, 4 2% 
The same solution is realized here (i.e. u = 1, u = 0). 

and 3, 
The qualitative behaviour of the functions p,(n),G(n), E,(n) is shown in Figures 1,2 

4. THE CHEMICAL POTENTIAL AND THE ENERGY 
FOR THE CHARGE-ORDERED STATE 

In this section we introduce the functional 

E,, = 1 (Ol(u,-t- U , , S ~ ~ B , ) H ( ~ , ,  + u n S ~ . B ~ ) 1 0 )  

which we minimize with respect to ui, ui , f ,  under the conditions 

m 9 n  
m' =P n' 

or 

(n i )+(n j )=2v  
(n j ) - (n i )=2v  

( n j )  =2v, (ni) = O  
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248 The ordering of localized electron pairs 

v, 

a 

v, 

b 

tP _ _  
2 

FIG. 1. The qualitative behaviour ofthe chemical potential vs electron density for the 
ground states (1) and (2) with the homogeneous pair distribution. (a) p,(n) for the 
intermediate parameter values: for curve 1 : V, < F2/3w; for curve 2: Vo> F2/3w. 
(b) pL,(n)  in the weak coupling limit: F / w < l ;  for curve 1: Vo-tP; for curve 2 :  

V, $ t P .  (c) p,(n) in the extremely strong coupling limit: F/w $ 1. 

In Eq. (32), n = 2v, where v is the electron density. Rewriting the first condition in (32) by 
the pair operators and calculating the averages, we obtain the condition for the 
definition of the chemical potential in the form 

The left-hand part of this equation as well as the expression for E,, is symmetrical with 
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n:;? n 

FIG. 2. The qualitative behaviour of the function f i ( w )  for curve 1 : 2t ,  >w,; for 
curve 2: 2 t ,  <o,. 

respect to i, j .  Therefore our expression is valid in the case when in Eq. (32) the indices i 
and j are transposed. 

The expression for E,, has the form 

i + j  

i + j  

+ ui” cos(qlij) (1 - ;) (1 -; + a)] + 4 ; wp[ .i( 1 - $) 
+ v ; ( l  -?)I+ zj I/.j{?(u2+ui+zuiuj)ninj 

+ f (  1 -g * .j+.f( 1 -:)’. 
In Eqs. (33) and (34) we rewrite: 

(34) 

(a) uj, u j  by ui, ui according to the relations 

u ? + u ; = I ,  uf+u?=1, i # j  (35) 
(b) ( n , ) ,  ( n j )  by n according to the conditions in Eq. (32). The parameters ui, ui are 

independent of the site indices because of the translational symmetry. 
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Es,H(n) 

n = 2  
0 - 

n 

FIG. 3. The energy E,(n) vs the electron density n. 

Taking into account these notions, Eqs. (33) and (34) lead to 

( 1 + Z 4 ) + 4 c o q f , 2  
4 

+ V,V~ . n ;  u, v = ui, ui;  V, = C V(Ri j )  
4 j 

(37) 

We minimize the energy with respect to& and obtain the expression for& vs u, u and n :  

Also we minimize the energy with respect to u, u and obtain the following equations: 

uv + I* -= n - t P  . J~-E~z. (1  - E) =o 
JI - u 2  

(39) 

(1 +Zq)+8 1 wqf; +21/,n (39a) 
P 
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We shall find the solution of the system of Eqs. (36), (38) and (39) in the low-density 
limiting case (n  e 1) and in the case of densities close to n=2, i.e. at 1 -n/2 e 1. At 
1 - n/2 6 1 in the first order the solution of Eqs. (36), (38) and (39) has the form 

At n 6 1 we obtain in the first order 

where 

p c 0 z & ) +  -+'+C-- n (43 ) ( 4 w 4  2F7 
Thus, according to the asymptotic expression (40)-(43) one can draw the 

following qualitative conclusions about the behaviour of pco at different densities and 
relative values of the parameters. In the weak-coupling limit (F4/o, 6 1, V,, tP 9 Fi/o,) ,  
pco(n)  decreases both in the vicinity of n = 2 (i.e. at ( 1  - n/2) 6 1) and near n = O  (at n e 1). 
Here, pco(0)<O, pc0(2)>0 (see Figure 4a). In the extremely strong coupling limit 

increases close ton = 2 as well as close to n = O  (see Figure 4b). At intermediate values of 
the parameters one is likely to observe the curve pco(n)  to behave differently depending 
on the ratio between V, ,  F i / o ,  and tP .  Some versions of this behaviour are given in 
Figure 4c. Note, that at all values of the parameters pco(0)<O. Figure 5 exhibits 
qualitatively the behaviour of the functionf?(n), attributing the lattice polarization to 
the interaction with bipolarons. 

In the weak coupling limit and for the condition tP  %+Vo, the point no where the pco(n)  
crosses the x-axis lies close to n= 2, i.e. in the region 1 - n/2 < 1. With increasing F,~/co,  
the condition proves to be more restrictive, namely, 

(F4/o,  4 1, Vo, tP e F;/w4)P,,(0) <o, cLco(2) <o, lPc0(2)l ' lPco(0)l. In this case P C O ( H )  

i.e. it is likely that the point no. where pco (no) =0, with increasing Fq/o,it abandons the 
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a 

I 

FIG. 4. The qualitative behaviour of pc0(n) in the charge-ordered state. (a) p,,(n) for 

the intermediate parameter values, for curve 1 : Vo > -, Vo < - - -- tP;  for 
9F2 21 F2 3 
2w 2 0  4 

9F2 21 F2 3 9F2 21 F2 3 
2 0  2 w 4  2 0  2 0 4  curve2: vo<-, V0<-- . - - -P;  for curve3: - - < V 0 < - - - - - t P .  

(b) pco(n) in the weak-coupling limiting case F/w + 1. (c) pco(n) in the extremely 
strong coupling limiting case: F/w + 1. 

region 1 - n/2 < 1 ,  even if at Fq/oq  < 1 it occurred in the region mentioned. Again we 
shall write down the values of the energy E,, at n 4 1 and 1 - n/2 < 1. Accurate to linear 
terms we have 
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I 

I 
* 

=2 n 

FIG. 5 .  The qualitative behaviour f y ( n )  in the charge-ordered state. 

4 3% 
(45) 

5. COMPARISON OF ps(n)  AND pco(n). POSSIBLE TYPES OF ORDERING 

Using the expressions for pco(n)  derived in Section 4 and those for p,(n)  from Section 3 
we compare the chemical potentials of the co- and s-states. As follows from the Eqs. ( 2 4 )  
and (41), at n = 2 (v = l), ps(2) > pc0(2), hence at those densities the charge-ordered state 
is realized. With decreasing n the behaviour of curves p,(n) and pco(n)  depends on the 
values of the interaction parameters and tP.  In the weak-coupling limit (Fq/oq 6 l), at 
1 - n/2 < 1, ps(n)  decreases with n faster than pco(n),  and at n 6 1, as follows from 
comparing Eqs. (42), ( 4 3 )  and (27), (28), ps(0)  = - tp/2 <pco(0)  = - tP/4, with increasing 
n pco(n) decreases and ps(n)  increases. 

In the intermediate range of values of the parameters, for example at 
zF,' /3mq< V, <z9F;/20, with decreasing n p, decreases close to n =  2 and pco 

increases, and h&e pc0(2) <O, ps(2)>0. Other variants are also possible there. For 
example, at V, < xF,2/3w,  V, + 3tP/2 > c2 1 F,'/2wq, pco and p s  increase close to n = 2, 

but pco(n)<O, p,(n)>O, etc. For the vilues of parameters satisfying the condition 
xF,'/3w4< V, <~9F,2/2m4 at n < 1, p c o > p s  and ps(n)  increases with n, and pco(n) may 

both increase and decrease, as seen from Eq. (43) .  In the extremely strong coupling limit 
(F, /w,  + 1)pS(2) zz 0, pco (2) % -c 3F,'/oq and at 1 - n/2 4 1, p, and pco increase with 

decreasing n, with pco(n) increazng faster. At n 6 1, p s ( 0 ) ~ p c o ( O ) ~  - ~ 2 F ~ / o q  and 

pco(n) increases faster than p , (n )  with n. From the comparison between pco(n) and ps(n)  
one can arrive at a conclusion on the realization of different states in the crystal at 
different densities and values of the parameters. At n = 2, ps(2) > pc0(2) and the co-state 
is realized. The condition ps(2) > pc0(2) if fulfilled up to the densities n = nZc where the 
curves p,(n)  and pco(n) intersect. The fact that they must intersect follows from their 
asymptotic behaviour described above. At n < nzc, p , (n)  <pco(n) .  If n2, < n,,, where n , ,  is 
given on page 244, then in the range n, ,<n<n , ,  the state with superconducting 
correlation is realized (it will be recalled that at n, ,  < n < 2 the superconducting order 

4 

4 

4 4 

4 
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t' 
P 

I 
I 

"IC 

/ i  I c 
n "PC 

a 

t' 

W I  

FIG. 6. The comparison of the functions p,(n) and pc,,(n) in the different limiting 
cases. (a) A possible situation for p,(n) and pc0(n) at F 2 / 3 0 <  V0<9F2/2w (the 
intermediate parameter values), (b) at F / o  < 1, i.e. V, 9 F2/w, (c) at F / o  9 1, i.e. 

V, < F 2 / w  

parameter A differs from zero). At n < n , ,  the disordered (by pairs) state is realized. 
Then value n,, depends on the relation between the parameters V, ,  tP and F ~ / w , .  Since, 
as follows from Eq. (24), ps (n)  does not intersect the x-axis in the region 1 - n/2 6 1, so 
n,, lies in any case in the region n < 1.9. That is why n2, is only estimated numerically. 
Possible ways of intersecting p , (n )  and pco(n) are qualitatively shown in Figure 6. For 
occurrence of the region n, ,  < n < n2,, where the state with superconducting correlation 
is realized, the following most favourable factors are : the weak-coupling limit 
FZ/w eVo,  t P ;  intermediate values of the parameters, for example, x%$sw,< VO<x9F:/2w, (see Figures 6a and b). In the extremely strong coupling 

lymit (F , lo ,b  I), ?he intersecting point is nzc < 1, therefore, only two states are possible: 
the co-state at n > n,, and the disordered one at n < nZc (see Figure 6c). 

6. PAIR TRANSFER ENERGY. THE OCCURRENCE O F  THE GROUND 
STATE WITH DELOCALIZED PAIRS 

This section deals with the determination of the transfer energy of the electron pairs 
(bipolarons) from one site to the adjacent one, in the charge-ordered state. Within the 
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framework of the present paper, in which the types of the ground states of bipolarons in 
the crystal are defined, the calculation of the pair transfer energy is of interest for the 
following reason. Assume, that at some values of the parameters and density n the pair 
transfer energy becomes less than the ground-state energy E,,, the chemical potential 
remaining constant. Then in the given range of the parameter values and at the given 
density, the ground state of the system becomes that in which every electron pair is 
delocalized in neighbouring sites. Below we show that such a range of parameter values, 
in which this state is realized, is certain to occur. To calculate the pair transfer energy, 
we average the Hamiltonian (Eq. (2)) over the states with a wavefunction of the 
following form : 

(Sf’ . B,Bj’Sf) 1 (u,+unS,2B,+)]0), izj 
m*n 

Then the bipolaron transfer energy is 

here ui, u,, Si are the functions determined in Section 4 for the charge-ordered state. 
Omitting here commonplace but very cumbersome calculations of the expectation 

values in Eq. (46), we derive a final expression for o,(n). Here ( n , ) ,  ( n j )  are expressed 
through n according to the conditions of Eq. (32): 

u , ( n ) = - + p , , ( n ) .  ( u 2 + 1 - u 2 + 2 u 4 7 )  n 2 + 2  1 -- i r ( 21 
+u2(4n-2(1 -:)+3(1 -$+n2)+2(1 -:y] 
+ (1 4)[( 1 + ?)( 1 - n  + ;) + (1 -;)(2 +; -;)I] 

n 

+$u2 . n +  (1 -2) 1 - n + - + $V0[uZ+ 1 - u2 ( 31 
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256 The ordering of localized electron pairs 

x ( 1 - -  ;) ( $ - n ) +  (; - - 1  )( 1 - n + -  ;) + ( 1 - -  ;)(;-I-;) 

+ 2 [ ( 2 -  l ) ( h + ; ) + ( l - ; ) ( F -  1 - 3 1 ]  
u, u = ui, ui (47 1 

At n = 2, using the relation uo = -a and the parameter values ui =$, u i  =+, we 
obtain 

It is interesting to note the following fact. As follows from (41), the interaction with 
phonons stabilizes the ground state (charge-ordered state), since the chemical potential 
&) decreases with increasing Fi/o,. Therefore the pair transfer energy must increase 
with F ; / o ,  as follows from Eq. (48). In section 4, E,, is shown to be equal to zero at 
n = 2. Thus the density in question is responsible for the following form of the condition 
for transferring from the charge-ordered state to the state with delocalized pairs: 

The condition is more easily satisfied in the weak-coupling limit Fq/oq& 1, when the 
inequality of Eq. (49) looks like 

tp2+vo (50) 

The condition in Eq. (50) has a clear physical meaning. Indeed, at a sufficiently great 
magnitude of the bipolaron bandwidth compared to the intersite repulsion, the pairs 
should be delocalized, and the state with localized pairs becomes thus unfavourable. 
Note, that t P  does not appear in the determination of pC0(2) from Eq. (41). It is therefore 
a change in the pair transfer energy cop relative to the ground-state energy that may 
reveal the transition to the state with delocalized pairs. 

Write down also expressions for o,(n) at densities 1 - n/2 $1.  The value given below 
for w;)(n) is derived from Eq. (47) with an accuracy to linear terms and using 
corrections p(l),fJ1), u(l), u( ' )  from Section 4: 

4 

It follows from this expression that in the weak-coupling limit and at tP <?Vo, o F ) < O .  
So wp(n) decreases with n close to n=2 .  Since in the weak-coupling limit E,,(n) 
increases close to n = 2 (see (45)), then at n < 2 the conditions for the inequality 
o,(n)<E,,(n) to be fulfilled become more favourable than at n=2. 

With extremely strong coupling o,(n) increases and E,,(n) decreases close to n = 2. 
Note that in this case the occurrence of the state with delocalized pairs is impossible, as 
tP+O with an exponential limit. 
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7. CONCLUSIONS 

It has been shown above that the function fq characterizing the degree of lattice 
polarization due to the bipolaron-phonon interaction is strongly dependent on the 
type of the ground state and on the density. It is determined by Eq. (16) for states with a 
homogeneous bipolaron distribution (the s-state and the disordered one) and by 
Eq. (38) for the charge-ordered state. Its dependence on density in the various states is 
demonstrated in Figures 2 and 5 .  It is worth noting that in the absence of ordering in the 
bipolaron system at n =O,f," = F4/w4. This is the actual value off, which was used in the 
calculations of Alexandrov and Ranninger (1981) and Alexandrov (1982). It is clear 
from the analysis carried out in this article that this function should be determined 
simultaneously with parameters of the ground states in place of a constant fq value 
chosen in the absence of ordering. To put it differently, the function f, (lattice 
polarization) and parameters of the ground states constitute self-consistent solutions of 
systems of equations like those obtained in Sections 3 and 4. Such an important change 
in the formulation of the problem is sure to modify significantly the physical behaviour 
of the bipolaron system. In particular, the dependence of various quantities (the 
chemical potential, the superconducting order parameter, etc) is considerably 
affected by the Hamiltonian parameters and by the density (compared to the data 
obtained by Alexandrov and Ranninger, 1981). Hence, the conditions for realizing a 
given ground state change as well. 

It follows from Sections 3 6  that at sufficiently low temperatures crystals with 
bipolarons can be in the following ground states. These are the states realized at 
n2c < n , c :  

(a) the disordered (by pairs) at n<n2,. 
(b)  the charge-ordered states at n > n2,. 

n2, is the intersecting point of the chemical potentials pco, pn (and pco(n)>ps (n)  at 
n < n2,), n , ,  is the density value from which the superconducting correlation parameter 
begins to differ from zero: A#O at n,,<n<2. 

At n2,> n, ,  the following states are possible: 

(a) the disordered state at n<nl,. 
(b) the superconducting correlation state (s-state) at nlc < n < n2,. 
(c) the charge-ordered state at n2, < n < 2. 

As is shown in Section 3, nlc= 1.2. The value n, ,  depends on the relation between the 
parameters V,, F;/mq, t P ,  and is defined only numerically from the equation 
pu,o(nzc)=p,(n2c);  pco(n)  and p,(n)  are defined by Eqs. (39) and (19), respectively. In the 
weak-coupling limit (Fq/mq<l) and in the intermediate range of values of the 
parameters (see Figures 6a and 6b)  the value of n , ,  may lie in the range 1.2-1.9. Hence 
the maximum range of density values, where the s-state is realized, is 0.7: 1.2<n< 1.9. 

In the extremely strong coupling limit(F,/w, B l)n,,< 1 (see Figure 6c) and the s-state 
is unrealizable. 

The dependence of the order parameter on tP and the density is expressed by Eq. (20). 
It is proportional to the bipolaron bandwidth. The density dependence is not 
strai htforward, since at intermediate density values t P  itself depends on n :  
tP = fe(R,)e- S ( R i j ) ,  [ (R,)  =Cf:(n)sin2(q:/2), f", is determined by Eq. (16). At 

F 4 / m , ~ 1 , t P = ~ g ~ t P ~ ~ ( R i j ) a n d A ( n ) ~ ~ O ( 1  - 4 2 ) .  J1 -@(n);at Fq/mqB l,tP+Oand 
R i j  4 

j 
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258 The ordering of localized electron pairs 

A+O. Finally, note that under the conditions laid down in Section 5 it is possible to 
realize states with pairs delocalized on neighbouring sites. For example, at n = 2 and 
F g / o g  6 1, this state can be realized when tP 

All the states obtained here are to be found in compounds with bipolarons, such as 
those described in the Introduction. A quantitative application of the results of this 
work to particular compounds and comparison with experimental data are not given 
here, but will be presented elsewhere, with the help of numerical solutions of equations 
such as (19) and (39) over the whole density range. 

APPENDIX 

Here we obtain the condition for the site-complex parameters at which the inequality 
(1) is fulfilled. Taking into account the Coulomb interaction between the s-electrons of 
the complex, and interactions with the intracomplex oscillations, we write the 
Hamiltonian of a single complex in the form 

H i = J a ~ a i , a ~ - , a i - , + ~  Fgo(Cgoeiqo'i+ C&e-'gO"i)a~ai, 
90 

+ C wqoC4+,Cgo = Hel-eI + Hel-ph + H p h  
90 

J is the strength of the Coulomb interaction, Cia, C,, the operators of the oscillations of 
alg symmetry, is the sum over the oscillations, ogo is an oscillation frequency, Fqo is 
the constant, characterizing the electron-oscillation interaction. The whole complex 
energy Ebl) with a single s-electron can be determined by 

90 

E ( s 1 )  E E i ( l ) =  ($1 IHilh > ( 1 ' 4 )  
We choose in the form I$l)=c ~ , U ~ ~ ~ O ) ,  S,=exp(C /3*(qo)Cgo+h.c.), 

/3(qoi) =hoe-igori, El ( 1 )  = - 2 c  FgofgO + coq$io. The function f,, is determined by 
mo 40 

'10 
the equation 

-- - 0  EOU) 
f q 0  

from which we obtain 

Using this expression, we can obtain the result 
f g o  = FigO/u 1 go 

The values Flgo, olqo correspond to the complex with a single s-electron. 
The complex energy with two s-electrons is determined by 

E(sZ)  Ei(2) = +(Ic121HilIc12), 

I Ic12)=C SP;o;, IO)> xu=a;ua ,+- .  
mu 

Calculating the expectation values, we obtain 

F2qo , Ei(2) = J2 - __ 2F29, 
f290 = wpqo 

90 w290 
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For the empty complex E,(O)=O. Thus, the inequality Eq. (l), 

2E,s1) > Eb2) + E ~ o )  
is equivalent to the condition 

The inequality (3A) is the condition for the existence of the bipolaron in the complex. 
The bipolaron binding energy is the left-hand of (3A), with a minus sign. Following 
from the inequalities (1) and (3A), the form of the effective electron attraction differs 
from the usual results (Anderson, 1975) by the term in F,qn in (3A). 
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